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Introduction
Binary matrices Describe relations
between 2 types of entities:
• readers / books
• users / movies
• customers / products
• authors / publications
• ...

Aims

• Interpretability via a low-rank rep-
resentation

• Capture power-law degree distri-
butions of real world datasets

• Develop efficient computational
procedure for posterior simulation

BNP approach
Elegant and useful
• Potential number of books may be

very large and considered infinite
• Captures power-law properties

Previous work (rank one)

• Indian buffet process [GG05]
• Beta-Bernouilli process [TJ07]
• Stable Beta process [TG09]
• BNP models for bipartite graphs

[Car12]

Formulation Represent the set
of books read by all readers by
a collection of atomic measures
(Z1, ..., Zn)

Zi =
∞∑
j=1

zijδθj

whereZi represents the set of books
read by reader i by a point process

• zij = 1 if reader i has read book j,
0 otherwise

• {θj} is the set of books

Completely random measures (CRM) [Kin67]
Random masses wj > 0 at random locations θj ∈ Θ characterized by a
Poisson process over R+ ×Θ

W =
∞∑
j=1

wjδθj

{(wj, θj)} ∼ PP(ν)

Homogeneous CRM ν(dw, dθ) = ρ(w)h(θ)dwdθ

W ∼ CRM(ρ, h)

wj ∼ PP(ρ) ⊥⊥ θj
iid∼ H

with finite total mass⇒∫ ∞
0

(1− e−w)ρ(dw) <∞

Generalized gamma process (GGP) Lévy intensity:

ρ(dw) =
α

Γ(1− σ)
w−1−σ exp(−wτ )dw

whereα > 0 and {σ ∈ (0, 1), τ ≥ 0} or {σ = 0, τ > 0}

• Infinitely many atoms:
∫∞

0 ρ(dw) =∞
• Interests: generality, interpretability, attractive conjugacy properties
• Admits as special cases: gamma process (σ = 0), inverse Gaussian process

(σ = 1
2 ), stable process (τ = 0)

• Exhibits power-law behavior when σ > 0

Probabilistic model

Likelihood

zij|γi, wj ∼ Ber
(

1− exp
(
−

p∑
k=1

γikwjk

))
Prior for readers parameters

γik ∼ Gamma(ak, bk)

Nonparametric prior for books
Compound random measure [GL14] The weightswjk come from a multi-
variate random measure

(W1, ...,Wp) ∼ CCRM(ρ0, λ1:p, h)

Wk =
∞∑
j=1

wjkδθj

where ρ0 is the Lévy intensity of a GGP(α, σ, τ)
Hierarchical construction

wjk = wj0βjk where

wj0 come from the directing mea-
sureW0

W0 ∼ CRM(ρ0, h)

W0 =
∞∑
j=1

wj0δθj

βjk are gamma distributed

βjk ∼ Gamma(λk, λk)

so that λ tunes the correlation be-
tween the measuresWk.

Inference
Goal Approximate p(γ1:n,1:p, w1:J,1:p, w

∗
1:p|Z1:n)

Gibbs sampler We introduce a set of latent variables to have conjugacy
properties. At each MCMC iteration:

• Update latent variables

• Update γik|rest ∼ Gamma, i = 1, ..., n, k = 1, ..., p

• Updatewjk|rest ∼ Gamma, j = 1, ..., J , k = 1, ..., p

• Updatew∗k|rest, k = 1, ..., p using adaptive thinning strategy [FT12]

Hyperparameters {α, σ, τ, λ1:p, a1:p, b1:p} updated using partially col-
lapsed Gibbs [VDP08] for good mixing

Future work
• Scalable inference
• Experiments on real world datasets
• Nonparametric prior over the parameters of readers γ
• Low-rank BNP models for symmetric matrices (adjacency in simple graphs)
• Binary tensor data
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