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Introduction

Binary matrices Describe relations Aims
between 2 types of entities:
- readers / books

e users / movies
customers / products
authors / publications

» Interpretability via a low-rank rep-
resentation

» Capture power-law degree distri-
butions of real world datasets

 Develop efficient computational
procedure for posterior simulation

BNP approach

Formulation Represent the set
. Potential number of books may be of books read by all readers by

Elegant and useful

a collection of atomic measures
(Z1y ey Zp)

oo
Zr,;: E Zijégj
j=1

very large and considered infinite
. Captures power-law properties

Previous work (rank one)

where Z; represents the set of books
read by reader ¢ by a point process

Indian buffet process [GGO5]
Beta-Bernouilli process [T]O7]
Stable Beta process [TGO9]

BNP models for bipartite graphs
[Car12]

- z;; = Llif reader ¢ has read book j,
0 otherwise

- {6} is the set of books

Completely random measures (CRM) [Kin67]

Random masses w; > 0 at random locations 8; € © characterized by a
Poisson process over RT X ©

W = iwjégj
1(w;,6;)} ~ PP(v)

Homogeneous CRM v (dw, df) = p(w)h(0)dwd6

W ~ CRM(p,h) 25
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with finite total mass =

o

1 0 Stick weights

Feature space ©

[ = e)p(w) < o

Generalized gamma process (GGP) Leévy intensity:

pldw) = I‘(lo.i O')w

179 exp(—wT)dw

wherea > 0and {oc € (0,1), 7 > 0}or{oc = 0,7 > 0}

+ Infinitely many atoms: [~ p(dw) = oo

- Interests: generality, interpretability, attractive conjugacy properties

- Admits as special cases: gamma process (o0 = 0), inverse Gaussian process
(o = %), stable process (r = 0)

- Exhibits power-law behavior when o > 0
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Prior for readers parameters

Yike O Gamma(ak,bk)

Nonparametric prior for books

Compound random measure [GL14] The weights w;; come from a multi-
variate random measure

(Wl, coes Wp) ~ CCRM(pO,)\Lp, h)

W, =

where pg is the Levy intensity of a GGP(«, o, 7)
Hierarchical construction

Wik — wjoﬁjk where

w;o come from the directing mea- [, are gammma distributed
sure Wy

e ~ G ALy A
W() ~ CRM(pO,h) /Bjk amma( ko k)

o ®
W, = Z w00, so that \ tunes the correlation be-
j=1

tween the measures Wy.

Inference

Goal Approximate p(7Viin,1:ps W1:3,1:ps Wi,p| Z1:n)

Gibbs sampler We introduce a set of latent variables to have conjugacy
properties. At each MCMC iteration:

 Update latent variables
- Update ;i |rest ~ Gamma,t = 1,...,n,k =1,...,p
- Update w;g|rest ~ Gamma,j =1,...,J,k=1,...,p

- Update wy |rest, k = 1, ..., p using adaptive thinning strategy [FT12]

Hyperparameters {a, o, 7, A1.p, @1.p, b1.,} updated using partially col-
lapsed Gibbs [VDPO8] for good mixing

» Scalable inference

- Experiments on real world datasets

 Nonparametric prior over the parameters of readers ~

» Low-rank BNP models for symmetric matrices (adjacency in simple graphs)
Binary tensor data



