
BiiPS: A software for inference in Bayesian graphical
models with sequential Monte Carlo methods

Adrien Todeschini, François Caron, Pierrick Legrand, Pierre Del Moral and Marc Fuentes

http://alea.bordeaux.inria.fr/biips

Motivation
The main factor in the success of MCMC methods is that they can be implemented with
little efforts in a large variety of settings. Many softwares have been developed such as
WinBUGS and JAGS, that helped to popularize Bayesian methods. These softwares allow
the user to define his statistical model in a so-called BUGS language, then runs MCMC
algorithms as a black box.

Although SMC methods have become a very popular class of numerical methods over the
last 20 years, there is no such “black box software” for this class of methods. The BiiPS
software aims at bridging this gap. From a graphical model defined in BUGS language,
it automatically implements SMC algorithms and provides summaries of the posterior
distributions.

SMC/particle methods

I Based on interacting particles systems governed by two stochastic mechanisms:

1. Mutation/Importance sampling: particles explore the space randomly and
independently

2. Selection/Resampling: the best suited particles are duplicated, others removed

I Designed to sample from a sequence of distributions πk(x1:k) = p(x1:k|y1:k) when
we can only compute the unnormalized version γk(x1:k)

πk(x1:k) =
p(x1:k, y1:k)

p(y1:k)
=
γk(x1:k)

Zk

Generic SMC algorithm with N particles
I At time 1: for i = 1, . . . , N

I Sample x
(i)
1 ∼ q1(x1)

I Compute unnormalized weights w
(i)
1 = γ1(x

(i)
1)

q1(x
(i)
1)

and estimate marginal likelihood

Ẑ1 =
∑N
i=1w

(i)
1

I At time k = 2, . . . , T : for i = 1, . . . , N

I Resample {x(i)
k−1, w

(i)
k−1} and set w

(i)
k−1 = 1/N

I Sample x
(i)
k ∼ qk(xk|x1:k−1)

I Compute unnormalized weights

w
(i)
k = w

(i)
k−1

γk(x
(i)
1:k)

γk−1(x
(i)
1:k−1)qk(x

(i)
k |x

(i)
1:k−1)

and

estimate marginal likelihood

Ẑk = Ẑk−1
∑N
i=1w

(i)
k

Figure : Particles genealogical
tree

Software features

Figure : BiiPS input/output flowchart

BUGS language compatible
I Includes most usual uni/multivariate

continuous/discrete distributions

I Standard operators, usual functions,
matrix operations. . .

I Easy language extensions with R and
Matlab functions

Development
I Free software adapted from JAGS c© M.

Plummer

I Core in C++ making use of Boost libraries

I Interfaces for and

I Multi-platform: Linux, Windows, Mac

SMC techniques
I Forward filtering

I Backward smoothing

I Usual resampling algorithms:
multinomial, residual, stratified and
systematic

I Conditional sampler for Gaussian
conjugate prior

Particle MCMC techniques
I Particle Independent Metropolis Hastings

I Particle Marginal Metropolis Hastings
with adaptive proposal

Future work

I Improve performance, parallelization, reduce memory footprint

I More conjugate samplers, distributions and functions

I More advanced particle techniques

Example in financial econometrics

Consider infering the underlying volatility x1:t from
observed price or rate data y1:t

x1 ∼ N (0, σ2

1−α2)

xt ∼ N (αxt−1,
σ2

1−α2) t > 1

yt ∼ N (0, β2 exp(xt)) t > 1

BUGS language

alpha ∼ dunif(0, 0.99)

prec.x <- (1-alpha^2) / sigma^2

x[1] ∼ dnorm(0, prec.x)

for (t in 2:t.max) {
f[t] <- alpha * x[t-1]

x[t] ∼ dnorm(f[t], prec.x)

prec.y[t] <- 1 / (beta^2 * exp(x[t]))

y[t] ∼ dnorm(0, prec.y[t]) }

Figure : Hidden Markov Model

Figure : Volatility simulation

RBiips package

Inference of the volatility
data <- list(t.max=100, sigma=1.0,

alpha=0.91, beta=0.5,

y=y)

Compile the model and load the data

model <- biips.model("volatility.bug",

data)

Run SMC algorithm

out.smc <- smc.samples(model, "x",

n.part=1000)

Summary statistics

x.summ <- summary(out.smc$x,

fun=c("mean","quantiles"),

probs=c(.05,.95))

plot(x.summ)

Kernel density estimates

plot(density(out.smc$x, adjust=2))

Figure : Summary statistics

Figure : Kernel density estimates

Estimation of the fixed parameter α
data <- list(t.max=100, sigma=1.0,

beta=0.5, y=y)

model <- biips.model("volatility.bug",

data)

Sensitivity analysis

out.sens <- smc.sensitivity(model,

list(alpha=seq(0,.99,.01),

n.part=100)

plot(param$alpha,

out.sens$log.marg.like)

Burn in PMMH algorithm

update.pmmh(model, "alpha",

n.iter=1000, n.part=100)

Generate PMMH samples

out.pmmh <- pmmh.samples(model,

"alpha", n.iter=10000,

n.part=100)

PMMH mean value

print(mean(out.pmmh$alpha))

PMMH trace plot and histogram

plot(out.pmmh$alpha)

hist(out.pmmh$alpha)

Figure : α sensitivity analysis

Figure : α PMMH samples: trace
plot and histogram

References

Andrieu, C., Doucet, A., and Holenstein, R. (2010).
Particle markov chain monte carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342.

Del Moral, P. (2004).
Feynman-Kac formulae: genealogical and interacting particle systems with applications.
Springer Verlag.

Doucet, A., De Freitas, N., and Gordon, N. (2001).
Sequential Monte Carlo methods in practice.
Springer Verlag.

Doucet, A. and Johansen, A. (2009).
A tutorial on particle filtering and smoothing: Fifteen years later.
Handbook of Nonlinear Filtering, pages 656–704.

http://alea.bordeaux.inria.fr/biips

