BiiPS

MCMSki IV: Recent Developments in Software for MCMC ...and SMC

<u>Adrien Todeschini</u>^{\dagger}, François Caron^{*}, Pierrick Legrand^{\dagger}, Pierre Del Moral^{\ddagger} and Marc Fuentes^{\dagger}

[†]Inria Bordeaux, ^{*}Univ. Oxford, [‡]UNSW Sydney

January 2014

Goals/aims

BiiPS = Bayesian inference with interacting Particle Systems

Motivation:

- Last 20 years: success of SMC in many applications
- No general and easy-to-use software for SMC

Objectives:

- Inference in graphical models defined in BUGS language
- Use SMC methods as inference engine instead of MCMC
- User-friendly, "black-box" implementation

History

- Started in Dec. 2009: Adrien Todeschini is recruited as engineer, funded by Inria (2009-2012) and CEA (2012)
- June 2012: First beta release with R interface
- Sept. 2012: Marc Fuentes (Inria engineer) is assigned to *BiiPS* project for 1.5 year
- Jan. 2014: New release (soon) with Matlab interface

Technical implementation 1/2

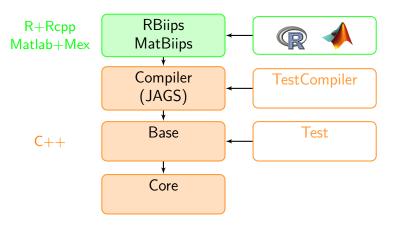


Figure : *BiiPS* architecture

Technical implementation 2/2

• SMC for general BUGS graphical models

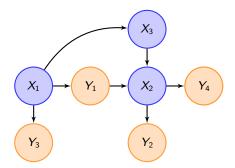


Figure : Graphical model before rearrangement

Technical implementation 2/2

• SMC for general BUGS graphical models

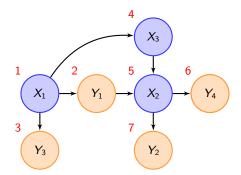


Figure : Topological sort (with priority to measurement nodes): $(X_1, Y_1, Y_3, X_3, X_2, Y_4, Y_2)$

Technical implementation 2/2

• SMC for general BUGS graphical models

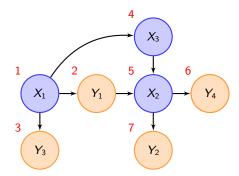


Figure : Topological sort (with priority to measurement nodes): $(X_1, Y_1, Y_3, X_3, X_2, Y_4, Y_2)$

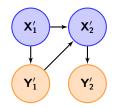


Figure : Rearrangement of a directed acyclic graph. $X'_1 = X_1, Y'_1 = \{Y_1, Y_3\},$ $X'_2 = (X_3, X_2)$ and $Y'_2 = \{Y_2, Y_4\}$

Strength

- Use of SMC methods
- Automatic implementation on **general graphical model** (not restricted to state-space models)
- BUGS language
- Automatic forward filtering, forward smoothing and backward smoothing algorithms, with standard adaptive resampling schemes
- Adaptive PMMH algorithm for static parameters inference (only RBiips currently)
- Automatic proposal distribution in some conjugate cases
- Interfaces with **R/Matlab** at the C++ level (using Rcpp/Mex)
- Easy extension of BUGS language with user-defined R/Matlab functions
- Multi-platform: Windows, Linux, Mac

Limitations

- Not really "automagic"...
 - Too much flexibility?
 - Need a more expert system?
- Lack of automatic diagnosis:
 - How to tune the number of particles?
 - Is ESS is sufficient?
- Not parallel
- \bullet Interpreted BUGS language \rightarrow slow, large memory occupied by the model
- Missing some BUGS language features

Alternative: LibBi software [Lawrence Murray, 2013]

Current and future development

- Particle MCMC algorithms for Matlab
- Particle Gibbs algorithm
- Open code to external contributions
- Improve robustness
- Improve performance: optimization, parallelization...
- More BUGS language features: functions, distributions...
- More advanced and conjugate samplers
- More tutorial examples and documentation

http://alea.bordeaux.inria.fr/biips

