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Matrix completion

Objective

@ Complete a matrix of potentially large dimension based on a small
(and potentially noisy) subset of its entries
[Srebro et al., 2005, Candes and Plan, 2010].

Popular application: collaborative filtering

@ To build automatic recommender systems, where the rows correspond
to users, the columns to items and entries may be ratings or binaries
(like/dislike).

@ The objective is then to predict user preferences from a subset of the
entries.

o e.g. Netflix, Amazon, Google...
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Model

@ Z an m x n unknown matrix of preferences

@ Low rank assumption:

Z ~ A BT
~ =~ =
mxn mxk kxn

with k < min(m, n).

@ Likelihood: we typically observe a noisy version Xj; of some entries
(i,j) € Q where Q C {1,...,m} x{1,...,n}.

iid ..
Xij = Zj+cij, €ij~ (0,02) v(i,j) € Q, (1)
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Further notations

@ Frobenius norm:

IXIIE =D X5

(i)
@ Subset operators:

[ X if(ig)eq
Pa(X)(i.J) = { 0  otherwise

N N[0 if(i,j)eq
P (X)(i,J) = { X otherwise
e r =min(m,n)

e X =UDVT is the e singular value decomposition (SVD) of X with
D—dlag(dl,...,d)andd1>d2 .>d >0

o Nuclear norm: [|X||« = >/ d;
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Optimization problem

miniZmize rank(2) )
. 1 ,
subject to 552 Z (Xj— Zj)2 <6
(ij)eq
1
< minimize —||Pa(X) — PQ(Z)||,2:+)\ rank(Z2) 3)
z 202 ;
- log likelihood penalty

@ Rank penalty: non convex problem
o Computationally hard for general subset 2

@ Nuclear norm penalty: convex relaxation
[Fazel, 2002, Candes et al., 2008, Mazumder et al., 2010]

minimize 7||PQ( ) = Pa(2)[17 + A 1| 2]l (4)

A. Todeschini & al. (Inria) Oxford Jan. 2014 7 /39



Summary

© Complete case
@ Rank penalty
@ Nuclear norm penalty
@ Hierarchical adaptive spectral penalty
@ EM algorithm for MAP estimation

A. Todeschini & al. (Inria) Oxford Jan. 2014 8 /39



Rank penalty

@ Non convex problem
mmgmze —HX Z||% + X rank(Z) (5)

@ Global solution given by a hard-thresholded (truncated) SVD
Z=H,.(X) (6)
where Hy(X) = UD*VT with D* = diag((dh ), - - -, (dr)as)

g [t =
A 71 0 otherwise
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Nuclear norm penalty
@ Convex relaxation
_ 1
miniize 51X — Z|% + X |1 Z]]. (7)
@ Global solution given by a soft-thresholded SVD
[Cai et al., 2010, Mazumder et al., 2010]
2 = S)\02(X)

where $y(X) = UD\VT with Dy = diag((dy — M)+, ..., (dr — \)+)
and t; = max(t,0).

@ The solution to (7) can be interpreted as the Maximum A Posteriori
(MAP) estimate

Z =arg max [log p(X|Z) + log p(Z)]
under the likelihood (1) and prior
p(Z) ocexp (=A|1Z]1.)
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MAP interpretaton

Assuming Z = UDV'T, with D = diag(ds, db,

..., d,) this can be further
decomposed as

p(Z) = p(U)p(V)p(D)
where

@ U and V follow a uniform Haar prior distribution on the unitary
matrices

@ the singular values d; follow an exponential distribution

p(D) = p(dy,....d) =[] Exp(dii \) (8)
i=1

The exponential distribution has a mode at 0, hence favoring sparse
solution.
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Hierarchical adaptive spectral penalty
[Todeschini et al., 2013]

@ ldea: to bridge the gap between the nuclear norm and the rank
penalty
@ We consider the following hierarchical prior for the low rank matrix Z.

p(dy, ..., drlv, ... vr) = [ [ pdilvi) = ] ] Exp(dii i)
i=1 i=1

r r
p(r1,- %) = [[ p(i) = [ Gamma(+;; a, b)
i=1 i=1

@ Marginal distribution over d;:

[e.e] aba
p(di) = /0 Exp(di; i) Gamma(v;; a, b)dv; = (d; + b)a+t (9)
It is a Pareto distribution with heavier tails than exponential
distribution
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Hierarchical adaptive spectral penalty

3

-8
-0
—B

Bore

[=2]
—

Figure : Marginal distribution
p(di) witha=b=p

@ HASP penalty: admits as special cases the nuclear norm penalty A||Z]].
when a = Ab and b — oo.

pen(Z) = —log p(Z Z log(p(d;)) Z(a +1)log(b+di) (10)
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Hierarchical adaptive spectral penalty

(a) Nuclear norm  (b) HASP (8 =1) (c) HASP (8 =0.1) (d) Rank penalty

> <P <=

(e) £1 norm (f) HAL (B =1) ) HAL (8 =0.1) (h) £o norm

Figure : Top: Manifold of constant penalty, for a symmetric 2 x 2 matrix Z = [x, y; y, 2] for
(a) the nuclear norm, hierarchical adaptive spectral penalty with a= b= (b) 8 =1 and (c)
B = 0.1, and (d) the rank penalty. Bottom: contour of constant penalty for a diagonal matrix
[x,0; 0, z], where one recovers the classical (e) lasso, (f-g) hierarchical lasso and (h) ¢y penalties.
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EM algorithm for MAP estimation

We derive an Expectation Maximization (EM) algorithm to obtain a MAP
estimate

~

Z =arg max [log p(X|Z) + log p(Z)]

i.e. to minimize

L(Z) = %HX—ZH%—l—Z(a—i—l)Iog(b—i—d,-) (11)
i=1
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EM algorithm for MAP estimation

o Latent variables: v = (v1,...,7r)
o E step:

Q(Z,27%) = Eflog(p(X, Z,7))|Z", X]

1 . \
=C-5 X~ Z|[z > Elyildf]d
i—1

1 r
= C—FHX—ZHZF—ZM@'
i-1

where w; = E[v;|d}] = bf;*.
1
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EM algorithm for MAP estimation
o M step:

. 1 -
minimize 5~ |X — ZH%— + iz_;widi (12)

(12) is an adaptive spectral penalty regularized optimization problem,

with weights w; = b"’_:r—dl_*.

df >dy >...>d;
=0<w <w <...<w, (13)

Given condition (13), the solution is given by a weighted
soft-thresholded SVD [Gaiffas and Lecué, 2011]

Z =S,2,(X) (14)

where S,(X) = L~/5WVT with
D, = diag((dh — w1)+, - .-, (dr — wr)4).
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EM algorithm for MAP estimation

--Nuclear Norm
HASP (5 = 2)

6]

)

&

Figure : Thresholding rules on the
singular values d; of X

The weights will penalize less heavily higher singular values, hence

reducing bias.
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HAST algorithm

Hierarchical Adaptive Soft Thresholded (HAST) algorithm for low

rank estimation of complete matrices

Initialize Z(®). At iteration t > 1
e For i =1,...,r, compute the weights Wit = —atl

i b+d,-(t71)
e Set Z() =8 _, »(X)

If % < & then return Z = Z(®)

v

This algorithm admits the soft-thresholded SVD operator as a special case

when a = b and b= (3 — o0.
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Settings

@ Parametrization:
» We set b= and a = A\ where X\ and (8 are tuning parameters that
can be chosen by cross-validation.
» It is possible to estimate ¢ within the EM algorithm. In our
experiments, we have found the results not very sensitive to the setting
of o, and set it to 1.
@ Initialization:

> As ) is the mean value of the regularization parameter ~;, we initialize
the algorithm with the soft thresholded SVD with parameter o2\
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Matrix completion

@ Only a subset Q C {1,...,m} x {1,...,n} of the entries of the
matrix X is observed.

@ Relies on imputing missing values

@ Assuming the same prior (9), the MAP estimate is obtained by
minimizing

L(Z2) = 55 1Pa(X) ~ Pa(Z)I} + (a+ 1) Y log(b + d)  (15)
i=1
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EM algorithm for MAP estimation

o Latent variables: v and Pg(X)

o E step:
Q(Z,Z*) = E[log(p(Pa(X), Pq(X), Z,7))|Z*, Pa(X)]
- G- % {HPQ(X) +PE(ZY) - ZHi} =Y Eildi]d;
i=1
o M step:

m|n|m|ze—]|X* Z||z - Zw,, (16)

where w; = E[v;|d?] and X* = Po(X) + Pa(Z*) is the observed
matrix, completed with entries in Z*.

We now have a complete matrix problem whose solution is obtained
with a weighted soft-thresholded SVD.
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EM algorithm for MAP estimation

Hierarchical Adaptive Soft Impute (HASI) algorithm for matrix
completion

Initialize Z(©) . At iteration t > 1

e Fori=1,...,r, compute the weights w/(t) = b;;;tl_l)
o Set ZW =S, (Pa(X) + Py (2(1))
f LEED)-L(20)

L(Z(tfl))Z(t)) < & then return Z = Z(®)

o HASI algorithm admits the Soft-Impute algorithm
of [Mazumder et al., 2010] as a special case when a = Ab and

b = — oco. In this case, one obtains at each iteration w,(t) = A for
all /.

@ On the contrary, when 8 < oo, our algorithm adaptively updates the
weights so that to penalize less heavily higher singular values.
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Initialization

@ The objective function (15) is in general not convex and different
initializations may lead to different modes.

@ As in the complete case, we suggest to set a = Ab and b= (8 and to
initialize the algorithm with the Soft-Impute algorithm with
regularization parameter g2 \.
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Scaling

@ Similarly to the Soft-Impute algorithm, the computationally
demanding part of HASI is S_ ) (Pa(X) + Pa(Z(t~Y)) which
requires calculating a low rank truncated SVD.

@ For large matrices, one can resort to the PROPACK
algorithm [Larsen, 2004]. This sophisticated linear algebra algorithm
can efficiently compute the truncated SVD of the “sparse + low
rank” matrix

Po(X) + P& (Z(1) = Po(X) — Po(Z(tD) 4 z(t-1)

TV
sparse low rank

and can thus handle large matrices.
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Simulated data

Procedure

@ We generate Gaussian matrices A and B respectively of size m X g and n X q,

q < r so that the matrix Z = ABT is of low rank q. A Gaussian noise of variance

o2 is then added to the entries of Z to obtain the matrix X.

@ The signal to noise ratio is defined as SNR = %(QZ)
@ Weset m=n=100 and o =1.

@ We run all the algorithms with a precision € = 107° and a maximum number of
tmax = 200 iterations (initialization included for HASI).

@ For the HASP penalty, we set a = A\ and b = .

@ We compute the solutions over a grid of 50 values of the regularization parameter

A linearly spaced from A to 0, where Ao = ||Pa(X)||2 is the largest singular value
of the input matrix X, padded with zeros. This is done for three different values
B =1,10,100.

@ We compute err, the relative error between the estimated matrix Z and the true
matrix Z in the complete case, and errg1 in the incomplete case, where

12 - 7| _ 1Pa(2) -~ Pa (2)]I7

err = ———— and errqL =
I1Z]17 “ 1P (2)|17
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Simulated data

Complete case

g @ The HASP penalty provides a
2 bridge/tradeoff between the
5 nuclear norm and the rank
T ST |
T penalty.
—HAST 8 =100
---HAST 8 =10 @ For example, value of 5 =10
--HAST B =1 -
R I L show a minimum at the true
n .
a rank ¢ = 10 as HT, but with
(a) SNR=1; Complete; rank=10 a lower error when the rank

Figure : Test error w.r.t. the rank is overestimated.

obtained by varying the value of the
regularization parameter A.
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Simulated data

Incomplete case

Test error

°
2

——MNMF

Test error

——MNMMF
SoftImp

(a) SNR=1; 50% missing; rank=>5

(b) SNR=10; 80% missing; rank=>5

Figure : Test error w.r.t. the rank obtained by varying the value of the

regularization parameter A\, averaged over 50 replications.

@ Similar behavior is observed, with the HASI algorithm attaining a
minimum at the true rank g = 5.
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Simulated data

Incomplete case
We then remove 20% of the observed entries as a validation set to estimate the

regularization parameters. We use the unobserved entries as a test set.

MMMF HE [ TH H{I}- .
SoftImp Hh t[he b [} . +
SoftImp+ HH f [ . b
HardImp rﬂ:} ,,,,,,,, N W ,w ‘
HAST |}t - | B |
"7 " Testeror 0 " T "Rank T 77" * Testerror " " "Rank ~ " 7"
(a) SNR=1; 50% miss. (b) SNR=1; 50% (c) SNR=10; 80% (d) SNR=10; 80%
miss. miss. miss.

Figure : Boxplots of the test error and ranks obtained over 50 replications.

@ For 50% missing data, HASI is shown to outperform the other methods.
@ For 80% missing data, HASI and Hard Impute provide the best performances.

@ In both cases, it is able to recover very accurately the true rank of the matrix.
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Collaborative filtering examples (Jester)

Procedure

© We randomly select two ratings per user as a test set, and two other
ratings per user as a validation set to select the parameters A and (.

@ The results are computed over four values 8 = 1000, 100, 10, 1.

@ We compare the results of the different methods with the Normalized
Mean Absolute Error (NMAE)

m Z(iaj)EQtest |X’J - ZU|
max(X) — min(X)

NMAE =
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Collaborative filtering examples (Jester)

Table : Results on the Jester datasets, averaged over 10 replications

Jester 1 Jester 2 Jester 3
24983 x 100 23500 x 100 24938 x 100
27.5% miss. 27.3% miss. 75.3% miss.

Method NMAE Rank | NMAE Rank | NMAE Rank
MMMF 0.161 95 0.162 96 0.183 58
Soft Imp 0.161 100 0.162 100 0.184 78
Soft Imp+ | 0.169 14 0.171 11 0.184 33
Hard Imp 0.158 7 0.159 6 0.181 4
HASI 0.153 100 0.153 100 0.174 30

@ The HASI algorithm provides very good performance on the different
Jester datasets, with lower NMAE than the other methods.
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Collaborative filtering examples (Jester)

Test error

= MNMF

SoftImp

SoftImp+

HardImp
—HASI 3 = 1000

~-HASI 3 =100 | .-~~~

--HASI 5 =10

HASI B3 =1

‘ ——MMMF
= SottImp
: x SoftImp+
i v HardImp
] —HASI 8 = 1000

Test error

(a) Jester 1

]
Rank

(b) Jester 3

Figure : NMAE w.r.t. the rank obtained by varying the regularization parameter

A

@ Low values of 3 exhibit a bimodal behavior with two modes at low

rank and full rank.

@ High value 8 = 1000 is unimodal and outperforms Soft-Impute at any
particular rank.
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Collaborative filtering examples (MovieLens)

Procedure

@ We randomly select 20% of the entries as a test set, and the
remaining entries are split between a training set (80%) and a
validation set (20%).

@ For all the methods, we stop the regularization path as soon as the
estimated rank exceeds rmax = 100.

@ For the larger MovieLens 1M dataset, the precision, maximum
number of iterations and maximum rank are decreased to e = 1079,
tmax = 100 and rpax = 30.
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Collaborative filtering examples (MovieLens)

Table : Results on the MovielLens datasets, averaged over 5 replications

MovieLens 100k | MovieLens 1M

943 x 1682 6040 x 3952

93.7% miss. 95.8% miss.
Method NMAE Rank NMAE Rank
MMMF 0.195 50 0.169 30
Soft Imp 0.197 156 0.176 30
Soft Imp+ | 0.197 108 0.189 30
Hard Imp 0.190 7 0.175 8
HASI 0.187 35 0.172 27

@ For the MovielLens 100k dataset, HASI provides better NMAE than
the other methods with a low rank solution.

@ For the MovieLens 1M dataset, MMMF provides the best NMAE at
maximum rank. HASI provides the second best performances with a

slightly lower rank.

A. Todeschini & al. (Inria)

Oxford

Jan. 2014 36 / 39



Summary

e Conclusion and perspectives

A. Todeschini & al. (Inria)

Oxford



Conclusion and perspectives

@ Conclusion:

» The proposed class of methods has shown to provide good results
compared to several alternative low rank matrix completion methods.

> |t provides a bridge between nuclear norm and rank regularization
algorithms.

» Although the related optimization problem is not convex, experiments
show that initializing the algorithm with the Soft-Impute algorithm
of [Mazumder et al., 2010] provides very satisfactory results.

@ Perspectives:
» Investigate a fully Bayesian approach and derive a Gibbs sampler or

variational algorithm to approximate the posterior distribution.
» Application to larger Netflix dataset
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